Motivation / Background

• A city generates about 300 to 400 truck trips per 1000 people per day, and each person consumes about 30 to 50 tons of goods per year. Urban freight takes up 10-15 percent of the total miles traveled on city streets and 3-5 percent of urban land.

• Urban traffic models mostly neglect freight activities due to lack of data. There is also lack of knowledge on how freight deliveries traveled on city streets and 3-5 percent of urban land.

• Current trip generation models are static and aggregated → Not useful for policy evaluation.

Observations

Food services and fashion establishments have high chance of being supplied by corporate warehouse. The chances are 34% and 71% respectively, compared to 8% for food courts.

Most deliveries took place from 11am to 3pm. However food deliveries can take place before 7am, and dip between 11am to 1pm.

Perishability of food is a strong determining factor to delivery frequency.

Hypothesis generated

1. Centralize distribution increase delivery size.
2. Centralize distribution do not affect delivery frequency or size.
3. Perishability the most powerful predictor of delivery frequency.
4. Except for congestion pricing there are little regulations pertaining to freight in Singapore, and we observe that deliveries mostly took place during off peak periods.
 • Delivery takes place when the operation cost is lowest.

Data collection

Interview surveys asked questions on two levels

<table>
<thead>
<tr>
<th>Establishment level</th>
<th>Weekly delivery frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment type</td>
<td>Total number of sources</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivery level</th>
<th>Total number of sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of source</td>
<td>Product mix</td>
</tr>
<tr>
<td>Product mix</td>
<td>Quantity</td>
</tr>
<tr>
<td>Quantity</td>
<td>Delivery frequency</td>
</tr>
<tr>
<td>Delivery frequency</td>
<td>Time of delivery</td>
</tr>
</tbody>
</table>

Multistage sampling

First stage: Representative zones in the city.
• Zones with The Most retail and food service outlets (SPH, 2013) in each cluster was selected.

Second stage: Proportional sampling of establishments by industry types 671 surveys collected.

Limitations and Conclusion

There is a lot of variation in delivery frequencies that is not fully explained by industry types and product types.

Econometrics models will be used to test hypothetical relationships between the variables.

Christopher Zergas, Professor, MIT-DUSP
Edgar E. Blanco, Research Director, MIT-CTL

Christopher Zergas, Professor, MIT-DUSP
Edgar E. Blanco, Research Director, MIT-CTL

Christopher Zergas, Professor, MIT-DUSP
Edgar E. Blanco, Research Director, MIT-CTL